Month: December 2016

Drip-fed success

The Australian Plant Phenomics Facility (APPF) is pleased to announce the new DroughtSpotter precision irrigation platform has been fully tested and commissioned, and is now ready to support your plant phenomics research.

The DroughtSpotter is a gravimetric platform with precision irrigation allowing accurate and reproducible water application for drought stress or related experiments.

droughtspotter-and-cecilia-and-viviana

Left:  Wheat plants on the DroughtSpotter  –  Right:  Cecilia and Viviana from Monash University harvest sorghum plants during their research

A number of pilot projects were carried out to test the platform with excellent results.

Monash University researchers, led by Associate Professor Ros Gleadow, investigated the impacts of dhurrin (a chemical that is toxic to grazing animals) on drought tolerance in sorghum plants. Plants were grown under a range of drought stresses and then harvested throughout growth for biomass characterisation, metabolomics and transcriptomic responses.

“We found the DroughtSpotter to be an excellent platform to apply accurate, reproducible amounts of water to large numbers of individual plants for growth and compositional analysis under different levels of water limitation,”said Associate Professor Gleadow.

Led by Professor Steve Tyerman, researchers from the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide and TA EEA-CONICET Mendoza, Argentina investigated the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under water stress.

“A better understanding of these mechanisms is highly relevant to irrigation scheduling and to ensure sustainable vineyard management in a context of water scarcity” said Professor Tyerman.

“The DroughtSpotter platform allowed us to achieve precise control over soil moisture and vine water stress, which was the most critical aspect to the success of this project.”

The DroughtSpotter greenhouse is available to all publicly or commercially funded researchers. For further information, please visit the APPF website or contact Dr Trevor Garnett.

To read the DroughtSpotter pilot project reports:  “Drought Response in Low-Cyanogenic Sorghum bicolor Mutants”  and  “Investigating the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under progressive water stress and recovery, and exogenous application of ABA in grapevine”

Phenotyping takes to the skies

This year the Australian Plant Phenomics Facility (APPF) partnered with the Unmanned Research Aircraft Facility (URAF) at the University of Adelaide to provide improved phenotyping capabilities to support Australian plant and agricultural scientists.

The researchers use sensors on board remotely piloted aircraft to monitor plant growth and vigour for agricultural and ecological research. Platforms range from multi-copters to fixed wing aircraft, carrying cameras and multispectral and thermal sensors. Imagery captured produce GIS (geographic information system) layers used to integrate with field data to further develop relationships between plant growth, environmental conditions and plant treatment. The potential to measure parameters on field trials such as establishment, height, biomass, stress and nutritional status can be explored using this technology.

A recent episode on the youth science television show ‘Scope’ features the APPF field phenotyping capacity with Dr Ramesh Raja Segaran from the research team demonstrating the use of drones to investigate wheat tolerant of sodic soils. You can watch the episode here (the story commences at 16 min 19 sec)… https://tenplay.com.au/channel-eleven/scope/season-3/episode-131

ramesh-with-uav

Dr Ramesh Raja Segaran demonstrating field phenotyping