Taking five with… Michael Schaefer

The three national nodes of the Australian Plant Phenomics Facility (APPF) are home to a highly talented team of plant science researchers and specialists. This passionate, cross-disciplinary team is skilled in areas such as agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics. But who are they?

Today we take five minutes to get to know…

Michael Schaefer, PhD

Tell us a little about where you work within the APPF.

I am based at the CSIRO node of the APPF in Canberra. This centre focuses on “deep phenotyping” (delving into metabolism and physiological processes within the plant) and “reverse phenomics” (dissecting traits to discover their mechanistic basis). Here, next generation research tools are being developed and applied to probe plant function and performance, under controlled conditions and in the field.

What do you do there?

I’m a Research Scientist and Team Leader of the Translational Phenomics and Services team. My team looks after all of the new projects that come into our node of the APPF, from dealing with clients directly, to designing experiments based on the client’s needs, right through to providing the final data products and support with analysis.

What is the best part of your job?

As one of the newest team members, the best part of my job has been meeting and working with new people and dealing with new projects in different plants and crops. Every case is different, so designing and running each project is unique which provides a lot of variety.

Where do you see plant phenomics research in 5-10 years time?

I think in 5-10 years’ time plant phenomics research will be very different. We can already see that sensors and technology are getting smaller, faster and cheaper. I think much of what we do with large sensors (lidar for example) will be replaced by much smaller handheld devices or drones that will process data on the fly and give you a result straight away. This will affect all areas of science, not just plant science, so I think it will just be something that we have to adjust to.

“The moment I realised I loved plant science was…”

Somewhere during my undergraduate degree. I was doing straight science, biology, chemistry and physics – very broad – and then I started making links with how physics could be related to the environment (i.e. plants etc.). This seemed to make more sense to me, as I could see the application and how it could directly affect people now, rather than working on something theoretical that may or may not ever be used.

If you could solve one plant science question, what would it be?

For me, I’m really interested in pastures, so it would be the holy grail to be able to accurately, remotely measure above-ground biomass and split it into the green and senesced fractions.

Pic of Michael Schaefer for blog

Michael Schaefer at the western entry of Angkor Wat, Cambodia

“When I am not working I am…”

At home spending time with my wife Ali and daughter Emilia, or outdoors playing cricket, golf or fishing.

If you could have one super power, what would it be?

Good question…. being able to bend time and space like Dr. Strange. That would be pretty cool!

“If I wasn’t a plant scientist I would be a…”

Fishing guide!

What is your most treasured possession?

They’re not a possession but my family are the most important to me.

If you could have dinner with two famous people who would they be?

Barack Obama and Tiger Woods.

What’s the one thing about you that would surprise people?

I have my private aeroplane pilot licence. I did my pilot training while I was doing my PhD – not that I get to fly much these days.

The APPF provides academic and commercial researchers with expert advice and access to high quality plant growth facilities and state-of-the-art automated phenotyping capabilities in controlled environments and in the field. We provide a suite of analytical tools to support high-throughput phenotyping and deep phenotyping in either controlled environments or in the field. Our dedicated team of experts provide consultation on project design and high quality customer support. If you would like to know more about our services and how we can support your plant science research, please contact us!

Spreading the word on great plant science

The Australian Plant Phenomics Facility (APPF) will appear in the media twice this week, promoting the importance of plant science.

The Stock Journal ran an article today (27 April) featuring our very own Dr Trevor Garnett on the front cover, talking about the importance of investment in agricultural research and the services available to scientists at the APPF.

The Adelaide node of the APPF will also feature on Channel 9’s television show “South Aussie with Cosi” which will air this Friday (28 April) at 8pm as part of a feature on the history and incredibly important research undertaken within the Waite Research Precinct. The segment can also be viewed online after the air date at:  https://www.9now.com.au/south-aussie-with-cosi.Trevor_Stock Journal paper clips

Sweet as Raspberry Pi: TERN’s new sensor technology for easier, cheaper ecosystem surveillance

Perched 30m above the Daintree Rainforest, Australia’s latest piece of high-tech environmental surveillance kit is keeping watch. 24 hours a day TERN’s new camera, the Sentinal Phenocam, feeds time-lapse images of vegetation to researchers to monitor the timing of vegetation development, including flowering, fruiting and leaf lifecycle—known as phenology. The data allows scientists to analyse the direction and magnitude of changes to vegetation phenology due to climate change and extreme weather events, such as cyclones and droughts.

Sentinal_Phenocam800

Dr Tim Brown, of the Australian Plant Phenomics Facility – ANU node, was involved in the development of the project. He’s predicting that this new phenocam technology will facilitate the expansion of environmental surveillance systems all around the nation.

“I’m really excited about this new technology and its many applications. It is well suited to large-scale research projects, smaller-scale environmental monitoring programs and enabling citizen science projects,” said Tim.

FNQTower_800

The Sentinal Phenocam is part of a nation-wide network of phenocams that has been installed by fellow NCRIS projects, TERN and the Australian Plant Phenomics Facility, at TERN SuperSites around Australia. This network of cameras forms part of a larger network called the Australian Phenocam Network, which, together with the TERN SuperSites BioImage Portal are making huge amounts of time-lapse image data accessible to scientists studying seasonal vegetation changes and carbon dynamics.

Read the full story and view the live feed here.

Talk with Dr Tim Brown.

What is TERN? The Terrestrial Ecosystem Research Network (TERN) is the national observatory for Australian ecosystems, delivering data streams that enable environmental research and management.

Find out more about the Australian Plant Phenomics Facility and how we can support your plant research here.

 

Taking the kinks out of curves

In a recent paper, researchers have developed a methodology suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

13007_2017_165_Fig2_HTML

An example of curve registration.  a The salinity sensitivity (SS) curves of the 16 functions from an arbitrary family, b SS curves after the curve registration, and c the corresponding time-warping functions. The salinity sensitivity on the y-axis of a and b refers to the derivative of the relative decrease in plant biomass

 

Advanced high-throughput technologies and equipment allow the collection of large and reliable data sets related to plant growth. These data sets allow us to explore salt tolerance in plants with sophisticated statistical tools.

As agricultural soils become more saline, analysis of salinity tolerance in plants is necessary for our understanding of plant growth and crop productivity under saline conditions. Generally, high salinity has a negative effect on plant growth, causing decreases in productivity.  The response of plants to soil salinity is dynamic, therefore requiring the analysis of growth over time to identify lines with beneficial traits.

In this paper the researchers, led by KAUST and including Dr Bettina Berger and Dr Chris Brien from the Australian Plant Phenomics Facility (APPF), use a functional data analysis approach to study the effects of salinity on growth patterns of barley grown in the high-throughput phenotyping platform at the APPF. The method presented is suitable to reduce the noise in large-scale data sets and thereby increases the precision with which salinity tolerance can be measured.

Read the full paper, “Growth curve registration for evaluating salinity tolerance in barley” (DOI: 10.1186/s13007-017-0165-7) here.

Find out how the Australian Plant Phenomics Facility can support your plant science research here.

TPA_KAUSTproject

High-throughput phenotyping in the Smarthouse™ at the Adelaide node of the APPF

NW 24-7-15 (2)

Barley plants growing in the Smarthouse™

 

 

Travel grant opportunity to attend the 34th Annual Root Biology Symposium

IPPN Root Phenotyping Working Group
Travel Grant for Researchers Using Phenotyping
IPG 2017, 34th Annual Root Biology Symposium
Columbia, Missouri, USA
7-9 June 2017

The IPPN Root Phenotyping Working Group (RPWG) encourages mobility among researchers and enhances international contacts between research groups. With this sponsorship grant RPWG  supports participation of Early Career Researchers at the IPG 2017, 34th Annual Root Biology Symposium.

  • Up to four grants of 500 EUR per researcher can be awarded.
  • 1 May 2017

Conditions:

  • You are affiliated with a university or a research institution and you are an early career scientist, PhD student, or postdoc who finished his PhD no later than ten years ago.
  • Please fill in the travel grant application and submit it to Saoirse Tracy.
  • The applications will be evaluated by the RPWG Board.

Getting to the root of plant zinc health

Sunlight and water are two obvious requirements essential for healthy growth of plants, but did you know that zinc is also a vital ingredient? Zinc is a critical nutrient in hundreds of enzyme systems which are necessary for normal plant function. Zinc is also critical for human health – in fact, zinc is involved in more body functions than any other mineral.

Plants get zinc from the soil via their root systems. This uptake of nutrients is enhanced in many plants by mycorrhizal fungi which colonise the roots, creating a vast connection between the plant roots and the soil around them. Mycorrhizal fungi effectively increase the surface area of the roots, collecting nutrients from the soil beyond the reach of plant roots alone, and transfer these nutrients back to the plant.

Scientist, Dr Stephanie Watts-Williams, wants to find out how such mycorrhizal fungi can improve the zinc nutrition of plants, and subsequently impact on human health – particularly in countries where zinc malnutrition is a serious issue.

Read on here about Stephanie and her research at The Plant Accelerator®, Australian Plant Phenomics Facility, and other Waite Research Precinct partners.

Discover more about Stephanie’s research here or find her on Twitter:  @myco_research

OLYMPUS DIGITAL CAMERA

Dr Stephanie Watts-Williams at The Plant Accelerator®, Australian Plant Phenomics Facility

New APPF website – have your say!

When it comes to plant science, we know our stuff, but we want to make sure we are sharing it the best way possible.

The Australian Plant Phenomics Facility is developing a new website. This is your chance to have your say! If you would like to offer some feedback, an idea on how our website can better support your research needs or if you have a desire for greater information, resources or news, please let us know. Contact us here.