cereal crops

Spreading the word on great plant science

The Australian Plant Phenomics Facility (APPF) will appear in the media twice this week, promoting the importance of plant science.

The Stock Journal ran an article today (27 April) featuring our very own Dr Trevor Garnett on the front cover, talking about the importance of investment in agricultural research and the services available to scientists at the APPF.

The Adelaide node of the APPF will also feature on Channel 9’s television show “South Aussie with Cosi” which will air this Friday (28 April) at 8pm as part of a feature on the history and incredibly important research undertaken within the Waite Research Precinct. The segment can be viewed online here (2:30min).Trevor_Stock Journal paper clips

Sun protection and diversity could be key to more productive rice crops

With a rapidly growing population, improving the yield of global food staples such as rice has become an urgent focus for plant scientists.

In a recent study published on Plant Physiology, scientists have discovered they can improve rice productivity by selecting rice varieties that are better at capturing sunlight to produce grains instead of reflecting it as heat.

The team, which included Dr Xavier Sirault from the Australian Plant Phenomics Facility’s High Resolution Plant Phenomics Centre (APPF – HRPPC), focused on rice’s natural diversity by using traditional breeding techniques to select cultivated varieties – or cultivars – that are better at converting sunlight into food.

coetp-rice-phenomics-meacham-1

“We studied hundreds of plants from five rice cultivars and found that there is variation between these varieties in relation to the quantity of light they use for growth or dissipate as heat. Some of them are capable of converting more sunlight into chemical energy, producing greater leaf area over time,” said lead researcher, Dr Katherine Meacham.

When leaves intercept sunlight, this sunlight is either; 1) absorbed by the leaf and converted via the process of photosynthesis into the plants own components; leaves, grains, roots, etc. 2) dissipated as heat as an strategy to protect the proteins of the plant from sun damage (photo-protection) or, 3) re-emitted as fluorescent light. In this study, the researchers measured fluorescence to infer the quantity of energy that is either converted into food or dissipated as heat.

“Recently scientists in the US found that they can produce transgenic plants that are better at catching sunlight without getting sun damage. Our work shows that this is also achievable by taking advantage of the natural variation of rice plants,” says Professor Robert Furbank, Director of the ARC Centre of Excellence for Translational Photosynthesis and one of the authors of this study.

“What is new about our research is that scientists had previously thought there was not much variation in how efficiently leaves could absorb and use light, and the reason for this is that they were not considering the full picture and measuring the plants throughout the entire day under natural illumination. We revealed that there are considerable differences between the five rice cultivars under moderate light and that means that there is room for selecting the most efficient plants,” said Professor Furbank.

“We found that there is room for improvement in some cultivars that can result in more photosynthesis without risking the plant’s protection strategies against sunlight damage.

The scientists measured fluorescence by clipping light receptors on leaves throughout a whole day to get a full picture of how the plant uses sunlight.

Traditional breeding for photosynthetic traits has not been a common strategy in any major cereal crop, in part due to the difficulty in measuring photosynthesis in thousands of plants. However, rapid screening tools are now available to study the interaction between the genes and the way they interact with the environment.

“Using unique facilities at the Australian Plant Phenomics Facility’s High Resolution Plant Phenomics Centre we were able to follow chlorophyll fluorescence in rice canopies throughout the entire day under natural illumination. This gave us completely different results when compared to the usual 30 min measurement of leaf level light use efficiency. By combining this with digital biomass analysis using PlantScan, we could link light use efficiency with growth, revealing genetic variation in rice varieties not previously detected,” said Professor Furbank.

“Our next step is to find varieties with superior photo-protection. We can directly use these for breeding and find the genes responsible. We have the capacity to screen many thousands of rice varieties for which we have gene sequence through the International Rice Research Institute,” said Dr Meacham.

coetp-measuring-photosynthesis-irri-2017-1

Measuring photosynthesis.  Photo credit:  International Rice Research Institute (IRRI)

 

 

Drip-fed success

The Australian Plant Phenomics Facility (APPF) is pleased to announce the new DroughtSpotter precision irrigation platform has been fully tested and commissioned, and is now ready to support your plant phenomics research.

The DroughtSpotter is a gravimetric platform with precision irrigation allowing accurate and reproducible water application for drought stress or related experiments.

droughtspotter-and-cecilia-and-viviana

Left:  Wheat plants on the DroughtSpotter  –  Right:  Cecilia and Viviana from Monash University harvest sorghum plants during their research

A number of pilot projects were carried out to test the platform with excellent results.

Monash University researchers, led by Associate Professor Ros Gleadow, investigated the impacts of dhurrin (a chemical that is toxic to grazing animals) on drought tolerance in sorghum plants. Plants were grown under a range of drought stresses and then harvested throughout growth for biomass characterisation, metabolomics and transcriptomic responses.

“We found the DroughtSpotter to be an excellent platform to apply accurate, reproducible amounts of water to large numbers of individual plants for growth and compositional analysis under different levels of water limitation,”said Associate Professor Gleadow.

Led by Professor Steve Tyerman, researchers from the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide and TA EEA-CONICET Mendoza, Argentina investigated the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under water stress.

“A better understanding of these mechanisms is highly relevant to irrigation scheduling and to ensure sustainable vineyard management in a context of water scarcity” said Professor Tyerman.

“The DroughtSpotter platform allowed us to achieve precise control over soil moisture and vine water stress, which was the most critical aspect to the success of this project.”

The DroughtSpotter greenhouse is available to all publicly or commercially funded researchers. For further information, please visit the APPF website or contact Dr Trevor Garnett.

To read the DroughtSpotter pilot project reports:  “Drought Response in Low-Cyanogenic Sorghum bicolor Mutants”  and  “Investigating the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under progressive water stress and recovery, and exogenous application of ABA in grapevine”

Phenotyping takes to the skies

This year the Australian Plant Phenomics Facility (APPF) partnered with the Unmanned Research Aircraft Facility (URAF) at the University of Adelaide to provide improved phenotyping capabilities to support Australian plant and agricultural scientists.

The researchers use sensors on board remotely piloted aircraft to monitor plant growth and vigour for agricultural and ecological research. Platforms range from multi-copters to fixed wing aircraft, carrying cameras and multispectral and thermal sensors. Imagery captured produce GIS (geographic information system) layers used to integrate with field data to further develop relationships between plant growth, environmental conditions and plant treatment. The potential to measure parameters on field trials such as establishment, height, biomass, stress and nutritional status can be explored using this technology.

A recent episode on the youth science television show ‘Scope’ features the APPF field phenotyping capacity with Dr Ramesh Raja Segaran from the research team demonstrating the use of drones to investigate wheat tolerant of sodic soils. You can watch the episode here (the story commences at 16 min 19 sec)… https://tenplay.com.au/channel-eleven/scope/season-3/episode-131

ramesh-with-uav

Dr Ramesh Raja Segaran demonstrating field phenotyping

 

Life is better with a “fun-gi”

Fungi colonise the roots of all cereal crops in a mutually beneficial association where the plant benefits from greater stress tolerance through improved water and mineral intake in exchange for carbohydrates for the fungi. The challenge in managing crop productivity and stress resilience is the unpredictability of plant growth responses when exposed to the fungi. It is possible to have too much or too little of a good thing! How do we get it right to avoid a detrimental impact on the plant and future crop production?

PhD student Rohan Riley, from Western Sydney University, is attempting to explain this unpredictability in terms of resource limitation by introducing fungal communities to plants which are isolated from soils containing high or low levels of salinity and analysing the effects on plant stress at the phenotypic level. He is undertaking his research at The Plant Accelerator® after being awarded a Postgraduate Student Internship Grant with the Australian Plant Phenomics Facility (APPF) in 2015.

”Using daily phenotyping following the application of salt stress and controlled watering-to-weight in The Plant Accelerator® allowed for an unprecedented resolution and range of plant genetic changes in response to combinations of nutrient level, salinity and two different fungal communities that would not otherwise be achievable in a regular greenhouse,”says PhD student, Rohan Riley.

rohan_brachy

”As a PhD student with limited experience in greenhouse experiments, the high controlled growth conditions, large-scale automation, digital imaging and software technology (high-throughput phenotyping) at The Plant Accelerator® provided me with the work-space, expertise and technical support to make a complicated experiment possible,”says Rohan.

The grain model Brachypodium distanchion was chosen to provide the greatest ease of knowledge transfer into many other crop plants with the view to developing future crops with greater resistance to environmental changes.

“It has been an amazing experience to conduct this experiment at The Plant Accelerator®. I am walking away from the facility with a big smile on my face, an incredible dataset for my PhD research and invaluable experience in greenhouse based plant research,’ says Rohan.

Thank you Rohan for being such a “fun guy” and a great addition to the team. It’s been a pleasure hosting you at The Plant Accelerator®!

Applications for the next round of APPF Postgraduate Student Internship Awards close on 30 November 2016.

To find out more about Rohan’s research:  https://www.researchgate.net/profile/Rohan_Riley

To find out more about Postgraduate Student Internship Grants, Scholarships and other programs at the Australian Plant Phenomics Facility:  http://www.plantphenomics.org.au/education/