crop productivity

Decadal Plan for Australian Agricultural Sciences 2017-2026 released

Grow. Make. Prosper. The Decadal Plan for Australian Agricultural Sciences was published in June 2017 and presents the strategic vision for Australian Agricultural Sciences in the next decade.

The plan outlines strategies to improve the strength and efficiency of agricultural research in Australia in ways that will increase the ability of governments and producers to maintain productivity and efficiency in the face of evolving natural challenges. Successfully identifying, developing and deploying the next generation of game-changing scientific advances remains an active and ongoing challenge. The plan also outlines strategies to capitalise on emerging technologies that will affect the agricultural sciences.

PhenomobileLite_16_JamieScarrow (sm)

Agriculture is vitally important to Australia’s economy and social fabric, and contributes to global health and wellbeing. It faces a range of challenges across biophysical, economic and social arenas. Opportunities for technological and production improvements are continuously being identified from scientific research. However, to attain step change improvements in profitability, productivity and sustainability into the future will require integrated multidisciplinary research underpinned by a well-resourced science research pipeline.

The Australian Plant Phenomics Facility plays a key role in supporting the next generation of agricultural research designed to answer some of these challenges. This month we will meet with colleagues from fellow NCRIS facilities TERN, BPA, ALA, NeCTAR and NCI to explore opportunities for collaboration, determine where overlaps or synergies occur and discuss bigger picture ideas to ensure NCRIS funding is used most effectively.

Read the full Decadal Plan for Australian Agricultural Sciences (2017-2026) here.

Find out more about the APPF here.

National National Collaborative Research Infrastructure Strategy (NCRIS)

Terrestrial Ecosystem Research Network (TERN)

Bioplatforms Australia (BPA)

Australian Atlas of Living (ALA)

National eResearch Collaboration Tools and Resources (NeCTAR)

National Computational Infrastructure (NCI)

2014-09-23_14-09-45_HDR

This is your chance! An invaluable opportunity to access phenotyping capabilities to further your plant science research

Do you have an exceptional plant science research project destined to deliver high impact outcomes for Australian agriculture? Do you need access to plant phenotyping capabilities?

The Phenomics Infrastructure for Excellence in Plant Science (PIEPS) scheme was announced in May and is open to all publicly funded researchers. Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. plant physiology, computer science, engineering, biometry, quantitative genetics, molecular biology, chemistry, physics) and from different organisations, within Australia or internationally, to focus on problems in plant science.

The PIEPS scheme involves access to phenotyping capabilities at the Australian Plant Phenomics Facility (APPF) at a reduced cost to facilitate exceptional research projects. Researchers will work in partnership with the APPF to determine experimental design and optimal use of the equipment. Our team includes experts in agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics.

Applications are assessed in consultation with the APPF’s independent Scientific Advisory Board. Selection is based on merit.

Don’t miss this an outstanding opportunity to gain access to invaluable expertise and cutting edge technology to accelerate your research project and make a real impact in plant science discovery.

Applications close:  30 September 2017

For more information and to apply:  APPF Phenomics Infrastructure for Excellence in Plant Science (PIEPS)

To find out how we can support your research, contact us.

Supporting the agricultural industry through R&D to deliver successful new products to market

Developing and bringing new agricultural products to market can be costly and time consuming for industry. Nufarm Limited recently sought the technology and expertise of the Australian Plant Phenomics Facility (APPF) to provide independent testing on potential new foliar sprays under development.

“The full service approach at the APPF, from the technology to the specialist staff, really appealed to us”, said Chad Sayer from Nufarm’s Product Strategy Group.

“The non-destructive, high-throughput phenotyping technology at the APPF gave us the ability to gain insights into our products under development that we could not achieve anywhere else. Their highly skilled, specialist team helped us design our experiments and provided invaluable advice throughout the project, right through to the data analysis.

“This has been exciting for us. Our pilot project delivered such promising results, we already have a large project underway”.

Nufarm wheat 000335

(L) Plants undergoing spray treatment.  (R) Daily observation and analysis by the horticultural team

“We have a bespoke approach, working closely with our customers to design their experiments to deliver the best results”, said Dr Bettina Berger, Scientific Director at the Adelaide node of the APPF.

Dr Berger and her colleagues provide consultation on all projects carried out at the Adelaide node, supporting the development of the initial design and execution of the research. The specialist horticultural team set up the experiments and manage them through to completion. Customers can make use of online monitoring and access of projects throughout the experiment stage via Zegami (‘live processing’ which allows result checking on a day-to-day basis). On completion of experiments image analysis and data analysis are handled by our skilled engineering, software and statistics team. The research team then provide consultation on results and further follow-up as required.

0382 on 5-5-17 (6)

Plants in a Smarthouse at the Adelaide node of the APPF undergo daily image analysis throughout the experiment

The APPF is available to all publicly or commercially funded researchers. For further information or to discuss how we can support your research, please visit the APPF website for contact details. For more information about this project, contact Dr Berger.

Nufarm Limited is an Australian company. It is one of the world’s leading crop protection and specialist seeds companies, producing products to help farmers protect their crops against damage caused by weeds, pests and disease. With operations based in Australia, New Zealand, Asia, Europe and the Americas, Nufarm sells products in more than 100 countries around the world. Find out more about Nufarm here.

Zegami is a web application which allows users to filter, sort and chart data from experiments undertaken in the Smarthouses at the APPF Adelaide node, with the unique feature of being able to group that data with the corresponding images. To get a real feel for the application, we highly recommend you watch the video. Further reading here.

An exciting offer of help for significant plant science research projects

Do you have an exceptional plant science research project destined to deliver high impact outcomes for Australian agriculture? Do you need access to plant phenotyping capabilities?

The Phenomics Infrastructure for Excellence in Plant Science (PIEPS) scheme is open to all publicly funded researchers. Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. plant physiology, computer science, engineering, biometry, quantitative genetics, molecular biology, chemistry, physics) and from different organisations, within Australia or internationally, to focus on problems in plant science.

The PIEPS scheme involves access to phenotyping capabilities at the Australian Plant Phenomics Facility (APPF) at a reduced cost to facilitate exceptional research projects. Researchers will work in partnership with the APPF to determine experimental design and optimal use of the equipment. Our team includes experts in agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics.

Applications are assessed in consultation with the APPF’s independent Scientific Advisory Board. Selection is based on merit.

This is an outstanding opportunity to gain access to invaluable expertise and cutting edge technology to accelerate your research project and make a real impact in plant science discovery.

Applications close:  30 September 2017

For more information and to apply:  APPF Phenomics Infrastructure for Excellence in Plant Science (PIEPS)

 

 

Taking the kinks out of curves

In a recent paper, researchers have developed a methodology suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

13007_2017_165_Fig2_HTML

An example of curve registration.  a The salinity sensitivity (SS) curves of the 16 functions from an arbitrary family, b SS curves after the curve registration, and c the corresponding time-warping functions. The salinity sensitivity on the y-axis of a and b refers to the derivative of the relative decrease in plant biomass

 

Advanced high-throughput technologies and equipment allow the collection of large and reliable data sets related to plant growth. These data sets allow us to explore salt tolerance in plants with sophisticated statistical tools.

As agricultural soils become more saline, analysis of salinity tolerance in plants is necessary for our understanding of plant growth and crop productivity under saline conditions. Generally, high salinity has a negative effect on plant growth, causing decreases in productivity.  The response of plants to soil salinity is dynamic, therefore requiring the analysis of growth over time to identify lines with beneficial traits.

In this paper the researchers, led by KAUST and including Dr Bettina Berger and Dr Chris Brien from the Australian Plant Phenomics Facility (APPF), use a functional data analysis approach to study the effects of salinity on growth patterns of barley grown in the high-throughput phenotyping platform at the APPF. The method presented is suitable to reduce the noise in large-scale data sets and thereby increases the precision with which salinity tolerance can be measured.

Read the full paper, “Growth curve registration for evaluating salinity tolerance in barley” (DOI: 10.1186/s13007-017-0165-7) here.

Find out how the Australian Plant Phenomics Facility can support your plant science research here.

TPA_KAUSTproject

High-throughput phenotyping in the Smarthouse™ at the Adelaide node of the APPF

NW 24-7-15 (2)

Barley plants growing in the Smarthouse™