crop stress

Supporting the agricultural industry through R&D to deliver successful new products to market

Developing and bringing new agricultural products to market can be costly and time consuming for industry. Nufarm Limited recently sought the technology and expertise of the Australian Plant Phenomics Facility (APPF) to provide independent testing on potential new foliar sprays under development.

“The full service approach at the APPF, from the technology to the specialist staff, really appealed to us”, said Chad Sayer from Nufarm’s Product Strategy Group.

“The non-destructive, high-throughput phenotyping technology at the APPF gave us the ability to gain insights into our products under development that we could not achieve anywhere else. Their highly skilled, specialist team helped us design our experiments and provided invaluable advice throughout the project, right through to the data analysis.

“This has been exciting for us. Our pilot project delivered such promising results, we already have a large project underway”.

Nufarm wheat 000335

(L) Plants undergoing spray treatment.  (R) Daily observation and analysis by the horticultural team

“We have a bespoke approach, working closely with our customers to design their experiments to deliver the best results”, said Dr Bettina Berger, Scientific Director at the Adelaide node of the APPF.

Dr Berger and her colleagues provide consultation on all projects carried out at the Adelaide node, supporting the development of the initial design and execution of the research. The specialist horticultural team set up the experiments and manage them through to completion. Customers can make use of online monitoring and access of projects throughout the experiment stage via Zegami (‘live processing’ which allows result checking on a day-to-day basis). On completion of experiments image analysis and data analysis are handled by our skilled engineering, software and statistics team. The research team then provide consultation on results and further follow-up as required.

0382 on 5-5-17 (6)

Plants in a Smarthouse at the Adelaide node of the APPF undergo daily image analysis throughout the experiment

The APPF is available to all publicly or commercially funded researchers. For further information or to discuss how we can support your research, please visit the APPF website for contact details. For more information about this project, contact Dr Berger.

Nufarm Limited is an Australian company. It is one of the world’s leading crop protection and specialist seeds companies, producing products to help farmers protect their crops against damage caused by weeds, pests and disease. With operations based in Australia, New Zealand, Asia, Europe and the Americas, Nufarm sells products in more than 100 countries around the world. Find out more about Nufarm here.

Zegami is a web application which allows users to filter, sort and chart data from experiments undertaken in the Smarthouses at the APPF Adelaide node, with the unique feature of being able to group that data with the corresponding images. To get a real feel for the application, we highly recommend you watch the video. Further reading here.

A step closer to salt tolerant chickpea crops

A recent study has collected phenotypic data of chickpea (Cicer arietinum L.) which can now be linked with the genotypic data of these lines. This will enable genome-wide association mapping with the aim of identifying loci that underlie salinity tolerance – an important step in developing salt tolerant chickpeas.

In this study, Judith Atieno and co-authors utilised image-based phenotyping at the Australian Plant Phenomics Facility to study genetic variation in chickpea for salinity tolerance in 245 diverse accessions (a diversity collection, known as the Chickpea Reference Set).

Chickpea is an important legume crop, used as a highly nutritious food source and grown in rotation with cereal crops to fix nitrogen in the soil or to act as a disease break. However, despite its sensitivity to salt, chickpea is generally grown in semi-arid regions which can be prone to soil salinity. This results in an estimated global annual chickpea yield loss of between 8–10%.

Screen Shot 2017-05-19 at 9.53.17 am

Salinity tolerance phenotyping in a Smarthouse at the Australian Plant Phenomics Facility’s Adelaide node at the Waite Research Precinct – Plants were imaged at 28 DAS for 3 consecutive days prior to 40 mM NaCl application in two increments over 2 days. Plants were daily imaged until 56 DAS. Right pane shows 6-week-old chickpeas on conveyor belts leaving the imaging hall proceeding to an automatic weighing and watering station.

 

The study found, on average, salinity reduced plant growth rate (obtained from tracking leaf expansion through time) by 20%, plant height by 15% and shoot biomass by 28%. Additionally, salinity induced pod abortion and inhibited pod filling, which consequently reduced seed number and seed yield by 16% and 32%, respectively. Importantly, moderate to strong correlation was observed for different traits measured between glasshouse and two field sites indicating that the glasshouse assays are relevant to field performance. Using image-based phenotyping, we measured plant growth rate under salinity and subsequently elucidated the role of shoot ion independent stress (resulting from hydraulic resistance and osmotic stress) in chickpea. Broad genetic variation for salinity tolerance was observed in the diversity panel with seed number being the major determinant for salinity tolerance measured as yield. The study proposes seed number as a selection trait in breeding salt tolerant chickpea cultivars.

Screen Shot 2017-05-19 at 9.54.30 am

Genotypic variation for salinity tolerance in the Chickpea Reference Set. Varying levels of salinity tolerance exhibited by different chickpea genotypes. Exposure of sensitive genotypes to 40 mM NaCl caused severe stunted growth, leaf damage, and led to less number of reproductive sites (flowers and pods) compared to moderately tolerant and tolerant genotypes.

 

The rapid development of new, high-resolution and high-throughput phenotyping technologies in plant science has provided the opportunity to more deeply explore genetic variation for salinity tolerance in crop species and identify traits that are potentially novel and relevant to yield improvement. The Australian Plant Phenomics Facility provides state-of-the-art phenotyping and analytical tools and expertise in controlled environments and in the field to help academic and commercial plant scientists understand and relate the performance of plants to their genetic make-up. A dedicated cross-disciplinary team of experts provides consultation on project design and high quality support.

To read the full paper in Scientific Reports, “Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping” (doi:10.1038/s41598-017-01211-7), click here.

To find out more about the Australian Plant Phenomics Facility and how we can support your research click here.

 

 

 

An exciting offer of help for significant plant science research projects

Do you have an exceptional plant science research project destined to deliver high impact outcomes for Australian agriculture? Do you need access to plant phenotyping capabilities?

The Phenomics Infrastructure for Excellence in Plant Science (PIEPS) scheme is open to all publicly funded researchers. Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. plant physiology, computer science, engineering, biometry, quantitative genetics, molecular biology, chemistry, physics) and from different organisations, within Australia or internationally, to focus on problems in plant science.

The PIEPS scheme involves access to phenotyping capabilities at the Australian Plant Phenomics Facility (APPF) at a reduced cost to facilitate exceptional research projects. Researchers will work in partnership with the APPF to determine experimental design and optimal use of the equipment. Our team includes experts in agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics.

Applications are assessed in consultation with the APPF’s independent Scientific Advisory Board. Selection is based on merit.

This is an outstanding opportunity to gain access to invaluable expertise and cutting edge technology to accelerate your research project and make a real impact in plant science discovery.

Applications close:  30 September 2017

For more information and to apply:  APPF Phenomics Infrastructure for Excellence in Plant Science (PIEPS)

 

 

Drought knows no borders

The Australian Plant Phenomics Facility (APPF) was delighted to welcome His Excellency Mr Mohamed Khairat, Ambassador of The Arab Republic of Egypt, to its Adelaide node recently.

Egyptians share our love of wheat, however, they are heavily reliant on wheat imports which are struggling to keep up with demand. As a remedy, 1.5 million hectares of Egyptian land has been set aside for local wheat production, but there are challenges ahead. Egyptian wheat growers suffer from the same yield limiting issues of heat and drought as we do here in southern Australia.

While touring the facility, His Excellency shared his enthusiasm for future collaboration with the APPF’s Dr Trevor Garnett.

“There is a wealth of knowledge and experience at the APPF and the Waite Campus of the University of Adelaide in plant phenotyping and wheat production. His Excellency sees exciting opportunities for Egyptian scientists and PhD students to collaborate on research and share ideas on how to improve this essential crop”, said Dr Garnett.

abassador-of-egypt-250117-pic1

His Excellency Mr Mohamed Khairat, Ambassador of The Arab Republic of Egypt (pictured right) talks with Dr Trevor Garnett in the DroughtSpotter greenhouse at The Plant Accelerator®, Australian Plant Phenomics Facility (Adelaide node)

 

Life is better with a “fun-gi”

Fungi colonise the roots of all cereal crops in a mutually beneficial association where the plant benefits from greater stress tolerance through improved water and mineral intake in exchange for carbohydrates for the fungi. The challenge in managing crop productivity and stress resilience is the unpredictability of plant growth responses when exposed to the fungi. It is possible to have too much or too little of a good thing! How do we get it right to avoid a detrimental impact on the plant and future crop production?

PhD student Rohan Riley, from Western Sydney University, is attempting to explain this unpredictability in terms of resource limitation by introducing fungal communities to plants which are isolated from soils containing high or low levels of salinity and analysing the effects on plant stress at the phenotypic level. He is undertaking his research at The Plant Accelerator® after being awarded a Postgraduate Student Internship Grant with the Australian Plant Phenomics Facility (APPF) in 2015.

”Using daily phenotyping following the application of salt stress and controlled watering-to-weight in The Plant Accelerator® allowed for an unprecedented resolution and range of plant genetic changes in response to combinations of nutrient level, salinity and two different fungal communities that would not otherwise be achievable in a regular greenhouse,”says PhD student, Rohan Riley.

rohan_brachy

”As a PhD student with limited experience in greenhouse experiments, the high controlled growth conditions, large-scale automation, digital imaging and software technology (high-throughput phenotyping) at The Plant Accelerator® provided me with the work-space, expertise and technical support to make a complicated experiment possible,”says Rohan.

The grain model Brachypodium distanchion was chosen to provide the greatest ease of knowledge transfer into many other crop plants with the view to developing future crops with greater resistance to environmental changes.

“It has been an amazing experience to conduct this experiment at The Plant Accelerator®. I am walking away from the facility with a big smile on my face, an incredible dataset for my PhD research and invaluable experience in greenhouse based plant research,’ says Rohan.

Thank you Rohan for being such a “fun guy” and a great addition to the team. It’s been a pleasure hosting you at The Plant Accelerator®!

Applications for the next round of APPF Postgraduate Student Internship Awards close on 30 November 2016.

To find out more about Rohan’s research:  https://www.researchgate.net/profile/Rohan_Riley

To find out more about Postgraduate Student Internship Grants, Scholarships and other programs at the Australian Plant Phenomics Facility:  http://www.plantphenomics.org.au/education/