innovation

A presidential visit from Sri Lanka

The Australian Plant Phenomics Facility’s (APPF) node based at the CSIRO in Canberra was thrilled to host His Excellency Maithripala Sirisena, President of Sri Lanka, and his delegation during their visit to Australia, 24 – 26 May.

This was the first time a Sri Lankan Head of State has made a state visit to Australia and marks the 70th anniversary of diplomatic relations between the two countries.

“President Sirisena’s visit will be an opportunity to advance key areas of bilateral cooperation, including education, defense, science and technology, economic development, medical research and the fight against people smuggling,” Australian Prime Minister, Malcolm Turnbull said in a statement before their meeting.

5D3_3803_JamieScarrow

Dr Xavier Sirault (right) demonstrates the PlantScan 3D imaging platform to President Sirisena (left) and his delegation at the Australian Plant Phenomics Facility’s node based at the CSIRO in Canberra.

As part of the Canberra visit, the President, who also holds the Cabinet portfolio of Environment, visited the APPF to learn more about plant phenomics which is being used to help tackle the major global challenges of future food production, sustainable agriculture, biodiversity conservation and climate change. The world class facility focuses on deep phenotyping (delving into metabolism and physiological processes within the plant) and reverse phenomics (dissection traits to discover their mechanistic basis).

5D3_3731_JamieScarrow

Dr Sirault discusses the benefits of the Phenomobile Lite with President Sirisena

Dr Xavier Sirault, Director of the node, shared a number of the facility’s highlights including PlantScan (a 3D imaging platform), ArduCrop (a wireless infrared canopy temperature sensor network), HeliPod (airborne imaging), Phenomobile Lite (an advanced mobile research platform used in non-destructive, high throughput plant phenotyping in the field) and growth chambers.

The President also visited the National Arboretum in Canberra, where he planted a sapling of Mahogany (Toona ciliata) and the ANU-CSIRO Centre for Genomics, Metabolomics and Bioinformatics.

“Sri Lanka can learn a lot from these centres about preserving environment, increasing forest density, and agriculture and food crop research,” said His Excellency Somasundaram Skandakumar, High Commissioner of Sri Lanka.

To find out more about Phenomobile Lite or any other services offered by the APPF node at CSIRO Canberra, please contact Dr Xavier Sirault.

Find out more about the Australian Plan Phenomics Facility.

Taking five with Prof. Justin Borevitz

The three national nodes of the Australian Plant Phenomics Facility (APPF) are home to a highly talented team of plant science researchers and specialists. This passionate, cross-disciplinary team is skilled in areas such as agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics. But who are they?

Today we take five minutes to get to know…

Prof. Justin Borevitz

APPF Portraits-2

Tell us about where you work within the APPF.

I lead the Canberra ANU node of the APPF. Our node is part of the Australian National University (ANU) Plant Science Division which is a world leader in plant research. In addition to the APPF, ANU Plant Sciences contains the Centre of Excellence (CoE) in Plant Energy Biology (PEB), CoE Translational Photosynthesis (CoETP) and the ANU-CSIRO Centre for Genomics, Metabolomics and Bioinformatics.

The Canberra ANU node of the APPF offers:

  • On-site phenomics and plant growth services – NextGen growth and phenotyping facilities for Australian and international researchers including greenhouses and growth chambers with timelapse imaging.
  • Genomics and bioinformatics, study design and data analysis support – analysis of phenotypic and genomics data and the opportunity to collaborate with world-class researchers in genomics, photosynthesis and bioinformatics.
  • Development and streamlining of cross-scale approaches in monitoring for scaling from lab to field, chamber to crop and forest.
  • Research and development of open source hardware and software pipelines and visualisation tools for enabling lower cost high-throughput phenotyping (HTP) and environmental monitoring.
  • A collaborative, cross-disciplinary approach to tackling the grand challenges associated with HTP and environmental monitoring.

We provide the only quarantine approved growth cabinets in Canberra for research purposes. A range of growth cabinets are available, capable of high resolution phenotyping of up to 2,000 small plants continuously in custom and climate-simulated growth environments (LED-based). Quantitative phenotypic screening for Arabidopsis and similar sized small plants can be conducted.

2014-09-23_14-09-45_HDR

Virtual reality is the new frontier in scientific visualisation. We also offer the ability to visualise a forest in virtual reality with sensor data overlays for a visually integrated understanding of the landscape. The APPF is a leader in the development of systems for visualising phenomics and environmental sensing data and point clouds in virtual and augmented reality (VR an AR). EcoVR is a virtual reality tool for recreating any forest or field site as a virtual space, where timelapse sensor and phenomics data can be overlaid on a 3-dimensional model of the landscape. VR and AR represent immense opportunities for revolutionising phenomics and education and for industry collaborations to develop new visualisation platforms for precision agriculture. These tools can help farmers understand their farming landscape and can be used by the forestry industry to understand how the landscape, environment and genetics interact to impact forest growth.

What do you do there?

I’m Scientific Director, overseeing all research projects.

What is the best part of your job?

I get the most enjoyment out of planning new experiments.

Where do you see plant phenomics research in 5-10 years time?

Digital, machine learning, interconnected sensors and farm equipment, and providing food and environmental services (carbon, water, nutrient management).

“The moment I realised I loved plant science was…”

On my dad’s farm, growing new release strawberries when I was 15 years old.

If you could solve one plant science question, what would it be?

Climate ready, high yielding crops that increase soil fertility.

“When I’m not working I am…”

You’ll find me kayaking or gardening (integrative problem solving).

If you could have one super power, what would it be?

I’d like to be able to communicate knowledge into understanding for rational decision making.

“If I wasn’t a plant scientist I would be a…”

Definitely a ski bumb!

What is your idea of absolute happiness?

My family.

What is your most treasured possession?

Again, my family.

What scares you?

Cancer, but also reaching global limits.

If you could go backwards or forwards in time, where would you go?

I’d like to see my grandfather as a child in Poland on his family farm, and my daughter as a grandmother on her urban farm.

Contact Professor Justin Borevitz

Screen Shot 2017-05-31 at 2.33.00 pm

Fertiliser start-up gets a boost at APPF

Plant Technologist

Resource Recovery Australia together with CSIRO, Cape York Partnership, Balkanu and Kalan Enterprises are developing new income streams for Cape York’s Aboriginal communities by producing organic soil-conditioners from an unlikely source, feral pigs, which cause vast environmental damage to native ecosystems.

A pilot project at the Australian Plant Phenomics Facility’s (APPF) Adelaide node, tested the effect of the ‘Feraliser’ at different concentrations on tomato growth.

“The data collected using the high-throughput phenotyping Smarthouse at the APPF provided valuable insights into the effectiveness of our product. We now know Feraliser performs just as well as the leading organic soil-conditioners currently on the market,” said Emmaline Froggatt from Resource Recovery Australia.

“Feraliser is very much at the start-up phase of development so costs are a big issue for us. The Australian Plant Phenomics Facility provided the information we needed without the expense of a full field trial.”

Find out more about Resource Recovery Australia.

To find out how the Australian Plant Phenomics Facility can support your research, go to our website or contact us.

Taking the kinks out of curves

In a recent paper, researchers have developed a methodology suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

13007_2017_165_Fig2_HTML

An example of curve registration.  a The salinity sensitivity (SS) curves of the 16 functions from an arbitrary family, b SS curves after the curve registration, and c the corresponding time-warping functions. The salinity sensitivity on the y-axis of a and b refers to the derivative of the relative decrease in plant biomass

 

Advanced high-throughput technologies and equipment allow the collection of large and reliable data sets related to plant growth. These data sets allow us to explore salt tolerance in plants with sophisticated statistical tools.

As agricultural soils become more saline, analysis of salinity tolerance in plants is necessary for our understanding of plant growth and crop productivity under saline conditions. Generally, high salinity has a negative effect on plant growth, causing decreases in productivity.  The response of plants to soil salinity is dynamic, therefore requiring the analysis of growth over time to identify lines with beneficial traits.

In this paper the researchers, led by KAUST and including Dr Bettina Berger and Dr Chris Brien from the Australian Plant Phenomics Facility (APPF), use a functional data analysis approach to study the effects of salinity on growth patterns of barley grown in the high-throughput phenotyping platform at the APPF. The method presented is suitable to reduce the noise in large-scale data sets and thereby increases the precision with which salinity tolerance can be measured.

Read the full paper, “Growth curve registration for evaluating salinity tolerance in barley” (DOI: 10.1186/s13007-017-0165-7) here.

Find out how the Australian Plant Phenomics Facility can support your plant science research here.

TPA_KAUSTproject

High-throughput phenotyping in the Smarthouse™ at the Adelaide node of the APPF

NW 24-7-15 (2)

Barley plants growing in the Smarthouse™

 

 

Last chance to secure an internship – apps close tomorrow!

This is your chance to investigate your plant science questions with the support of the highly skilled Australian Plant Phenomics Facility (APPF) team and the incredible technology and infrastructure we have available.

Internships are offered at the APPF in Adelaide and Canberra for enthusiastic, highly motivated postgraduate students with a real interest in our research and technology. Current postgraduate students in the following areas are encouraged to apply:

  • Agriculture
  • Bioinformatics
  • Biology
  • Biotechnology
  • Computer Science
  • Genetics
  • Mathematics
  • Plant physiology
  • Science
  • Software engineering
  • Statistics

Interstate students are strongly encouraged to apply!

We offer postgraduate internship grants which, in general, comprise:

  • $1,500 maximum towards accommodation in Adelaide or Canberra, if required
  • $500 maximum towards travel / airfare, if required
  • $10,000 maximum toward infrastructure use

The APPF has identified a number of priority research areas, each reflecting a global challenge and the role that advances in plant biology can play in providing a solution:

  • Tolerance to abiotic stress
  • Improving resource use efficiency in plants
  • Statistics and biometry
  • Application of mechatronic engineering to plant phenotyping
  • Application of image analysis techniques to understanding plant form and function

Students proposing other topics will also be considered.

APPF postgraduate internship grants involve access to the facility’s phenotyping capabilities to undertake collaborative projects and to work as an intern with the APPF team to learn about experimental design, image and data analysis in plant phenomics.

Selection is based on merit. Applications are assessed on the basis of academic record, research experience and appropriateness of the proposed research topic. Interviews may be conducted.

Postgraduate students are encouraged to contact APPF staff prior to submitting their application to discuss possible projects.

APPLICATIONS CLOSE:  31 March 2017. For further information click here.

 

Why apply for an internship with the APPF?

Well, aside from the fact we are a pretty nice bunch…

PhD student Rohan Riley, from Western Sydney University, undertook his research at APPF’s Adelaide node (The Plant Accelerator®) after being awarded a Postgraduate Student Internship Grant with us in 2015.

His research attempted to explain the unpredictability of plant growth responses in terms of resource limitation by introducing fungal communities to plants which are isolated from soils containing high or low levels of salinity and analysing the effects on plant stress at the phenotypic level.

This is what he had to say about his experience:

”Using daily phenotyping following the application of salt stress and controlled watering-to-weight in The Plant Accelerator® allowed for an unprecedented resolution and range of plant genetic changes in response to combinations of nutrient level, salinity and two different fungal communities that would not otherwise be achievable in a regular greenhouse,” said Rohan.

rohan_brachy

”As a PhD student with limited experience in greenhouse experiments, the highly controlled growth conditions, large-scale automation, digital imaging and software technology (high-throughput phenotyping) at The Plant Accelerator® provided me with the work-space, expertise and technical support to make a complicated experiment possible.”

“It has been an amazing experience to conduct this experiment at The Plant Accelerator®. I am walking away from the facility with a big smile on my face, an incredible dataset for my PhD research and invaluable experience in greenhouse based plant research.”

To find out more about Rohan’s research:  https://www.researchgate.net/profile/Rohan_Riley

A better way to tackle environmental variation in your greenhouse research

Statistics prove the smart way to deal with variation in your controlled environment greenhouse.

Plant phenomics allows the measurement of plant growth with unprecedented precision. As a result, the question of how to account for the influence of environmental variation across the greenhouse has gained attention.

Controlled environment greenhouses offer plant scientists the ability to better understand the genetic elements of specific plant traits by reducing the environmental variances in the interaction between genetics and environment.

But controlled environments aren’t as controlled as they seem – variation does exist. For example, some days are cloudy, some are not. The sun, as it crosses the sky, casts shadows differently on plants, depending on their position within the greenhouse. In fact, a recent study by colleagues at INRA in Montpellier showed significant light gradients within a greenhouse and provided sophisticated tools for understanding how much light each plant receives.

One practice for dealing with variation has been to rearrange the position of the plants around the greenhouse during the experiment, however, there is a better way.

img_1128

Rice plants growing in The Plant Accelerator® at the Australian Plant Phenomics Facility’s Adelaide node

The automated high-throughput phenotyping greenhouses at The Plant Accelerator® are controlled environment facilities which use sensor networks to identify and quantify environmental gradients (light, temperature, humidity) in the greenhouses. To further tackle environmental variation, Chris Brien, Senior Statistician at The Plant Accelerator®, led a study that showed good statistical design and analysis was key to accounting for the impact of environmental gradients on plant growth. It was argued that rearranging the plants during the experiment makes it impossible to adjust for the effect of gradients and should be avoided.

The study involved a two-phase wheat experiment involving four tactics in a conventional greenhouse and a controlled environment greenhouse at The Plant Accelerator® to investigate these issues by measuring the effect of the variation on plant growth.

To learn more about Chris’s study read the full paper here.

To discuss the benefits of good statistical design contact Chris Brien.

To access The Plant Accelerator® for your research:  The Plant Accelerator® at the Australian Plant Phenomics Facility (APPF) is available to all publicly or commercially funded researchers. We have a full team of specialists including statisticians, horticulturalists and plant scientists who can provide expert advice to you when preparing your research plans.

 

 

Professor Mark Tester to talk plant science in Adelaide

Professor Mark Tester from King Abdullah University of Science & Technology (KAUST), Saudi Arabia, will present a talk in Adelaide this March:

“Into the field and into the genome – increasing salinity tolerance of crops”

Time:  Wednesday 8 March, 3.30pm – 4:30pm
Venue:  Hosted by The University of Adelaide, Plant Science Department, the talk will be held in the Plant Genomics Centre seminar room (Waite Campus, The University of Adelaide, South Australia) with drinks and nibbles afterwards. All are welcome.

About the speaker

Mark Tester is Professor of Bioscience at KAUST. After a PhD in Cambridge and lectureship there, he went to Adelaide, as a Research Professor in the Australian Centre for Plant Functional Genomics and Director of the Australian Plant Phenomics Facility. Mark was part of the team that led the establishment of this Facility, a $55m organisation that develops and delivers state-of-the-art phenotyping facilities, including The Plant Accelerator, an innovative plant growth and analysis facility. In his research group, forward and reverse genetic approaches are used to understand salinity tolerance and improve this in crops such as barley and tomatoes. His aspiration is to develop a new agricultural system where brackish water and seawater can be unlocked for food production.

Abstract

One-third of the world’s food is produced under irrigation, and this is directly threatened by over-exploitation of water resources and global environmental change. In this talk, the focus will be on the use of forward genetics to discover genes affecting salinity tolerance in barley, rice and tomatoes, along with some recent genomics in quinoa, a partially domesticated crop with high salinity tolerance. Rather than studying salinity tolerance as a trait in itself, we dissect salinity tolerance into a series of components that are hypothesised to contribute to overall salinity tolerance.

For barley, two consecutive years of field trials were conducted at the International Center for Biosaline Agriculture, a site with sandy soil and very low precipitation. Drip irrigation systems allowed the control of salinity by supplying plots with low (1 dS/m) and high salinity water (17 dS/m). A barley Nested Association Mapping (NAM) population developed by Klaus Pillen has been used to dissect physiologically and genetically complex traits in response to salt stress. Ten traits related to yield and yield components (e.g. days to flowering, harvest index, 100 seed mass) were recorded and five stress-indices were derived from each of these measurements. We have identified two significant loci located on the long arms of chromosomes 1H and 5H, which are both associated with several traits contributing to salinity tolerance, namely days to flowering, days to maturity, harvest index and yield.

For tomatoes, the focus is on genetics of tolerance in wild tomatoes, specifically Solanum galapagense, Solanum cheesmaniae and Solanum pimpinellifolium. An association genetic approach is being taken. High quality genome sequences have been made, and genotyping-by-sequencing undertaken. Tomatoes have been phenotyped in The Plant Accelerator and in the field, and analyses are currently in progress.

The application of this approach provides opportunities to significantly increase abiotic stress tolerance of crops, and thus contribute to increasing agricultural production in many regions.

Mark is in Adelaide between Mon 6th and Sun 12th March. If you would like to meet with Mark, please contact him directly: mark.tester@kaust.edu.sa

The Plant Accelerator

Plant phenotyping research projects facilitated by The Plant Accelerator vary from large scale screening of early growth, to salinity tolerance and water and nutrient use efficiency. Possible applications are diverse with respect to the measured traits and plant species studied. Please contact our experts to discuss how your research might benefit from the capabilities and services provided by The Plant Accelerator.

IMG_0958

The Plant Accelerator®,  Australian Plant Phenomics Facility, Adelaide, South Australia