quinoa

An exciting offer of help for significant plant science research projects

Do you have an exceptional plant science research project destined to deliver high impact outcomes for Australian agriculture? Do you need access to plant phenotyping capabilities?

The Phenomics Infrastructure for Excellence in Plant Science (PIEPS) scheme is open to all publicly funded researchers. Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. plant physiology, computer science, engineering, biometry, quantitative genetics, molecular biology, chemistry, physics) and from different organisations, within Australia or internationally, to focus on problems in plant science.

The PIEPS scheme involves access to phenotyping capabilities at the Australian Plant Phenomics Facility (APPF) at a reduced cost to facilitate exceptional research projects. Researchers will work in partnership with the APPF to determine experimental design and optimal use of the equipment. Our team includes experts in agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics.

Applications are assessed in consultation with the APPF’s independent Scientific Advisory Board. Selection is based on merit.

This is an outstanding opportunity to gain access to invaluable expertise and cutting edge technology to accelerate your research project and make a real impact in plant science discovery.

Applications close:  30 September 2017

For more information and to apply:  APPF Phenomics Infrastructure for Excellence in Plant Science (PIEPS)

 

 

Delicious potential: The genome of quinoa decoded

Scientists have successfully decoded the genome of quinoa, one of the world’s most nutritious and resilient crops.

The study, published online this week in Nature, was an international collaboration led by Professor Mark Tester at the King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

The enormously popular “super-food” is gluten-free, has a low glycaemic index and contains an excellent balance of essential amino acids, fibre, lipids, carbohydrates, vitamins, and minerals, causing international demand for the grain to soar and prices to skyrocket as demand exceeds supply.

“Apart from its nutritional benefits, the ability of quinoa to grow on marginal land is possibly most exciting”, said Prof Mark Tester. “It can grow in poor soils, salty soils and at high altitudes. It really is a very tough plant. Quinoa could provide a healthy, nutritious food source for the world using land and water that currently cannot be used, and our new genome takes us one step closer to that goal.”

quinoa-kaust-trials

Quinoa pilot trials in the Australian Plant Phenomics Facility’s high-throughput phenotyping Smarthouse at The Plant Accelerator®

Future research projects will focus on identifying the genes that make quinoa so tolerant to poor soils. In pilot experiments carried out at the Australian Plant Phenomics Facility‘s Adelaide node, The Plant Accelerator®, different growth conditions and salt applications were tested in preparation for larger-scale studies. The first studies showed that quinoa still grows well when watered with half-strength sea water, when many other crops would die. Since performing these initial experiments, Professor Tester and his team have secured further research funding to work towards establishing quinoa as a broadacre crop.

“We are extremely excited to support this important research”, said Dr Bettina Berger, Scientific Director at The Plant Accelerator®. “As part of this collaborative project, The Plant Accelerator® will perform two screening runs of a diversity panel in the second half of 2017 to identify the genetic basis of salt tolerance in quinoa”.

Further reading:

The full published study in Nature. doi:10.1038/nature21370

KAUST An Integrated Repository for Population Genomics in genus Chenopodium

BBC News online article

Nature Middle East online article