rice

Collaborating for the common good: CIMMYT and CSIRO meet to capitalise on strengths

Plant scientists around the world share a common goal:  understanding plants to improve their tolerance of environmental stresses, resist disease and ultimately, increase yield. Global collaborations that share knowledge and technology are rich in experience and are essential to help accelerate our understanding to meet future challenges.

A recent meeting in El Batán, Mexico, is an excellent example of great minds coming together. Three team members from the Australian Plant Phenomics Facility joined host institution, CSIRO, and CIMMYT in a two-day workshop aimed at achieving critical steps towards a common framework for field phenotyping techniques, data interoperability and sharing experience.

CSIRO at CIMMYT

Front row:  Warren Creemers (4th from left), Xavier Sirault (5th) and Michael Schaefer (7th)

“Capitalising on our respective strengths, we developed basic concepts for several collaborations in physiology and breeding, and will follow up within ongoing projects and through pursuit of new funding,” said Matthew Reynolds, CIMMYT wheat physiologist, signaling the following:

  • Comparison of technologies to estimate key crop traits, including GreenSeeker and hyperspectral images, IR thermometry, digital imagery and LiDAR approaches, while testing and validating prediction of phenotypic traits using UAV (drone) imagery.
  • Study of major differences between spike and leaf photosynthesis, and attempts to standardise gas exchange between field and controlled environments.
  • Work with breeders to screen advanced lines for photosynthetic traits in breeding nurseries, including proof of concept to link higher photosynthetic efficiency/performance to biomass accumulation.
  • Validation/testing of wheat simulation model for efficient use of radiation.
  • Evaluation of opportunities to provide environment characterisation of phenotyping platforms, including systematic field/soil mapping to help design plot and treatment layouts, considering bioassays from aerial images as well as soil characteristics such as pH, salinity, and others.
  • Testing the heritability of phenotypic expression from parents to their higher-yielding progeny in both Mexico and Australia.
  • Extraction of new remote sensed traits (e.g., number of heads per plot) from aerial images by machine learning (ML) of scored traits by breeders and use of ML to teach those to the algorithm.
  • Demonstrating a semantic data framework’s use in identifying specific genotypes for strategic crossing, based on phenotypes.
  • Exchanging suitable data sets to test the interoperability of available data management tools, focusing on the suitability of the Phenomics Ontology Driven Data (PODD) platform for phenotypic data exchanges, integration, and retrieval.

CSIRO and CIMMYT share a long history in crop modelling and physiology, spanning more than 40 years. CIMMYT works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming. The centre’s portfolio squarely targets critical challenges, including food insecurity and malnutrition, climate change and environmental degradation. Through collaborative research, partnerships, and training, the centre helps to build and strengthen a new generation of national agricultural research and extension services in maize- and wheat-growing nations. As a member of the CGIAR System composed of 15 agricultural research centres, CIMMYT leads the CGIAR Research Programs on Maize and Wheat, which align and add value to the efforts of more than 500 partners.

 

International consortia tackle the global challenge to increase wheat yields at the APPF

Field of ripe wheat

Two international consortia of scientists from the United States, Great Britain, Mexico and Australia are currently carrying out research projects of global importance at the Australian Plant Phenomics Facility’s (APPF) Adelaide node for the International Wheat Yield Partnership (IWYP).

The first research project, Improving Yield by Optimising Energy Use Efficiency, is phenotyping an Excalibur x Kukri RIL population to determine genetics controlling energy use efficiency (EUE) in wheat. The aim is to identify genetic loci and markers to enable breeding of high-yielding germplasm with:

  • low rates of leaf respiratory CO2 released per unit growth,
  • optimised levels of sugars, organic and amino acids for growth, and
  • increased biomass at anthesis.

More than 85-90% of the energy captured by plants is used in high-cost cellular processes, such as transport of nutrients and respiration, meaning about only 10-15% is allocated to yield. Thus, any small gain in energy redistribution and use for a costly process can have a marked positive impact on biomass accumulation and yield.

Improvements in EUE can be achieved at the cell, tissue and whole-plant level, with respiration being a prime target.

“Our initial screening of 138 Australian commercial cultivars revealed a two-fold variation in rates of leaf respiration, three-fold variation in the ratio of respiration to growth rate during early development, and significant heritability of 35%. This demonstrates there is untapped genetic variation in EUE amenable to fine-tuning and optimisation of biomass accumulation in the lead-up to anthesis, with concomitant positive knock-on effects on yield”, said Australian National University’s Barry Pogson, Project Lead and Director of the ARC Centre of Excellence in Plant Energy Biology (AUS).

The project has partners at University of Western Australia (AUS), CIMMYT (MEX) and  the University of Adelaide (AUS).

The second research project, AVP1, PSTOL1 and NAS – Three High-Value Genes for Higher Wheat Yield, aims to enhance wheat yield by exploiting and building synergy of three high value genes (AVP1, PSTOL1 and NAS) and enabling molecular breeding by:

  • developing two-gene and three-gene pyramiding combinations of AVP1, PSTOL1 and NAS using available transgenic wheat lines and quantifying the additive effects on yield in multi-location field and greenhouse trials (as a proof of concept),
  • identifying wheat orthologs and allelic variants of TaAVP1, TaPSTOL1 and TaNAS, and designing molecular markers to the best alleles for marker-assisted breeding,
  • providing basic understanding of the physiological and molecular mechanisms behind improved yield and selecting wheat lines with the best allelic combination and field performance, and
  • assessing the necessity for using genome editing technologies to optimise gene function and enhance positive effect on wheat yield by modifying expression of the wheat alleles.

The genes Vacuolar Proton Pyrophosphatase 1 (AVP1), Phosphorus Starvation Tolerance 1 (PSTOL1) and Nicotianamine Synthase (NAS) have been shown to improve plant biomass production and grain yield. Over-expression of these genes results in improved biomass production and grain yield in a range of plant species, including cereals (rice, barley, wheat), in optimal growing conditions. The enhanced yield of the plants is believed to be due to improved sugar transport from source to sinks (AVP1), enhanced root growth and nutrient uptake (AVP1, PSTOL1) and increase in shoot biomass and tiller number (AVP1, PSTOL1, NAS2).

“Identifying and pyramiding the wheat orthologues of these high-value genes provides a real opportunity to produce wheat with significantly improved field performance and higher grain yield,” said Project Lead, Stuart Roy, from the University of Adelaide (AUS).

The project has partners at University of Melbourne (AUS), Arizona State University (USA), Cornell University (USA), University of California, Riverside (USA) and Rothamsted Research (GBR).

These extensive projects will continue throughout 2017 and into 2018.

 

Why is this research so important?

Wheat is the most widely grown of any crop globally, providing 20% of daily calories and protein. By 2050 wheat demand is expected to increase by 60%. To meet this demand, annual potential wheat yield increases must effectively double – an exceptional challenge.

In November 2012, funding agencies and organisations from the G20 countries agreed to work together and formed the global Wheat Initiative to develop a strategic approach to supporting research that would lead to dramatically increasing the genetic yield potential of wheat.

An essential pillar of this strategy is the International Wheat Yield Partnership (IWYP), a novel collaborative approach, enabling the best scientific teams from across the globe to work together in an integrated program to address the challenge of raising the genetic yield potential of wheat by up to 50% in the next two decades all over the world. IWYP builds on the initial research concepts of the Wheat Yield Consortium established by CIMMYT.

To deliver increased wheat yield, a combination of fundamental bioscience and applied research will be needed. IWYP will deliver this through a focused program of research to develop new knowledge, models and wheat lines suited to multiple environments ensuring global gains in wheat yields are achieved.

IWYP will target six key research scope areas:

  • uncovering genetic variation that creates the differences in carbon fixation and partitioning between wheat lines,
  • harnessing genes from wheat and other species through genetic modification to boost carbon capture and fixation to increase biomass production,
  • optimising wheat development and growth to improve grain yields and harvest index,
  • developing elite wheat lines for use in other breeding programs,
  • building on discoveries in wheat relatives and other species, and
  • fostering breakthrough technology development that can transform wheat breeding.

The “IWYP Science Program” provides a unique plan to generate new discoveries and provides for their rapid incorporation into wheat crops grown throughout the world. IWYP’s overarching aims are to stimulate new research, amplify the output from existing programs and make scientific discoveries available to farmers in developing and developed nations.

 

The Australian Plant Phenomics Facility

The APPF provides state-of-the-art phenotyping tools and expertise to help academic and commercial plant scientists from Australia and around the world understand and relate the performance of plants to their genetic make-up. Research facilitated at the APPF is leading to the development of new and improved crops, more sustainable agricultural practices, improved maintenance and regeneration of biodiversity in the face of declining arable land area and the challenges of climate change. Our services.

Do you need access to plant phenotyping capabilities? The PIEPS scheme can help!

Do you have an exceptional plant science research project destined to deliver high impact outcomes for agriculture? The Phenomics Infrastructure for Excellence in Plant Science (PIEPS) scheme was announced in May and is open to all publicly funded researchers. Emphasis is placed on novel collaborations that bring together scientists preferably from different disciplines (e.g. plant physiology, computer science, engineering, biometry, quantitative genetics, molecular biology, chemistry, physics) and from different organisations, within Australia or internationally, to focus on problems in plant science.

The PIEPS scheme involves access to phenotyping capabilities at the Australian Plant Phenomics Facility (APPF) at a reduced cost to facilitate exceptional research projects. Researchers will work in partnership with the APPF to determine experimental design and optimal use of the equipment. Our team includes experts in agriculture, plant physiology, biotechnology, genetics, horticulture, image and data analysis, mechatronic engineering, computer science, software engineering, mathematics and statistics.

Applications are assessed in consultation with the APPF’s independent Scientific Advisory Board. Selection is based on merit.

Don’t miss this an outstanding opportunity to gain access to invaluable expertise and cutting edge technology to accelerate your research project and make a real impact in plant science discovery.

Applications close:  30 September 2017

For more information and to applyAPPF Phenomics Infrastructure for Excellence in Plant Science (PIEPS).

To find out how the APPF can support your research, contact us.

Learn more about projects at the Australian Plant Phenomics Facility and keep in touch.

 

 

Turbo charging crops to feed the billions: An interview with Prof Bob Furbank

The former Director of the Australian Plant Phenomics Facility‘s Canberra node at CSIRO, Professor Bob Furbank, has given an excellent interview on ABC Radio, discussing plant research and the global challenge to feed 9 billion people by mid-century.

Bob Furbank.png

Now Director of the ARC Centre of Excellence for Translational Photosynthesis at
Australian National University in Canberra, Bob talks about his experiences in early photosynthesis research and his part in the C4 Rice Consortium.

The C4 Rice Consortium coordinates efforts from labs all over the world trying to isolate the genes responsible in C4 plants and apply them in C3 plants. If successful, yields in wheat and rice are expected to be 50% higher than present. An impressive result seen as vital for future food security. The consortium is led by Jane Langdale at the University of Oxford and funded by the Bill & Melinda Gates Foundation.

Listen to the interview or read the full transcript here.

Canberra, Camille and the Cropatron…

As the sun rises over another crisp autumn morning in Canberra, you will find French intern, Camille Mounier, keenly watching over her rice lines in the Cropatron at the Australian Plant Phenomics Facility’s node at CSIRO Agriculture and Food.

Her project, ‘A complex system biology approach to understand the factors affecting canopy photosynthesis’, is being led by Dr Xavier Sirault, Director of the node, in partnership with the Chinese Academy of Sciences.

The project team aim to develop system models of canopy photosynthesis for both rice and wheat, in particular, developing novel methods to combine these system models with phenomics data. This approach will help in the identification of the critical factors controlling photosynthetic energy conversion efficiency in C3 species with the view to improving canopy photosynthetic efficiency, and subsequently, crop yields in small grain cereals.

Using the Cropatron platform, Camille will acquire data on canopy growth, gas and energy exchange in order to validate the biophysical photosynthetic model developed by Prof Xinguang Zhu, Head of Plant Systems Biology Group at the CAS-MPG Partner Institute for Computational Biology.

The Cropatron is a PC2 compliant, fully environmentally controlled (temperature, CO2 and humidity) greenhouse equipped with an automated gantry system (operating at 3.5m above the floor) for proxy-sensing imaging of plants grown in mini canopies. The sensing head is composed of an hyperspectral camera (400-1000nm) for measuring chlorophyll pigments, Far IR imaging for proxy sensing of canopy conductance, LiDAR for quantifying canopy architecture and monitoring growth over time, lysimeters for measuring water use at plot level and a gas exchange chamber at canopy level for measuring canopy assimilation.

Academic and commercial plant scientists are welcome to access the Cropatron platform – find out about pricing, availability and bookings here.

 

Taking the kinks out of curves

In a recent paper, researchers have developed a methodology suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

13007_2017_165_Fig2_HTML

An example of curve registration.  a The salinity sensitivity (SS) curves of the 16 functions from an arbitrary family, b SS curves after the curve registration, and c the corresponding time-warping functions. The salinity sensitivity on the y-axis of a and b refers to the derivative of the relative decrease in plant biomass

 

Advanced high-throughput technologies and equipment allow the collection of large and reliable data sets related to plant growth. These data sets allow us to explore salt tolerance in plants with sophisticated statistical tools.

As agricultural soils become more saline, analysis of salinity tolerance in plants is necessary for our understanding of plant growth and crop productivity under saline conditions. Generally, high salinity has a negative effect on plant growth, causing decreases in productivity.  The response of plants to soil salinity is dynamic, therefore requiring the analysis of growth over time to identify lines with beneficial traits.

In this paper the researchers, led by KAUST and including Dr Bettina Berger and Dr Chris Brien from the Australian Plant Phenomics Facility (APPF), use a functional data analysis approach to study the effects of salinity on growth patterns of barley grown in the high-throughput phenotyping platform at the APPF. The method presented is suitable to reduce the noise in large-scale data sets and thereby increases the precision with which salinity tolerance can be measured.

Read the full paper, “Growth curve registration for evaluating salinity tolerance in barley” (DOI: 10.1186/s13007-017-0165-7) here.

Find out how the Australian Plant Phenomics Facility can support your plant science research here.

TPA_KAUSTproject

High-throughput phenotyping in the Smarthouse™ at the Adelaide node of the APPF

NW 24-7-15 (2)

Barley plants growing in the Smarthouse™

 

 

Last chance to secure an internship – apps close tomorrow!

This is your chance to investigate your plant science questions with the support of the highly skilled Australian Plant Phenomics Facility (APPF) team and the incredible technology and infrastructure we have available.

Internships are offered at the APPF in Adelaide and Canberra for enthusiastic, highly motivated postgraduate students with a real interest in our research and technology. Current postgraduate students in the following areas are encouraged to apply:

  • Agriculture
  • Bioinformatics
  • Biology
  • Biotechnology
  • Computer Science
  • Genetics
  • Mathematics
  • Plant physiology
  • Science
  • Software engineering
  • Statistics

Interstate students are strongly encouraged to apply!

We offer postgraduate internship grants which, in general, comprise:

  • $1,500 maximum towards accommodation in Adelaide or Canberra, if required
  • $500 maximum towards travel / airfare, if required
  • $10,000 maximum toward infrastructure use

The APPF has identified a number of priority research areas, each reflecting a global challenge and the role that advances in plant biology can play in providing a solution:

  • Tolerance to abiotic stress
  • Improving resource use efficiency in plants
  • Statistics and biometry
  • Application of mechatronic engineering to plant phenotyping
  • Application of image analysis techniques to understanding plant form and function

Students proposing other topics will also be considered.

APPF postgraduate internship grants involve access to the facility’s phenotyping capabilities to undertake collaborative projects and to work as an intern with the APPF team to learn about experimental design, image and data analysis in plant phenomics.

Selection is based on merit. Applications are assessed on the basis of academic record, research experience and appropriateness of the proposed research topic. Interviews may be conducted.

Postgraduate students are encouraged to contact APPF staff prior to submitting their application to discuss possible projects.

APPLICATIONS CLOSE:  31 March 2017. For further information click here.

 

Why apply for an internship with the APPF?

Well, aside from the fact we are a pretty nice bunch…

PhD student Rohan Riley, from Western Sydney University, undertook his research at APPF’s Adelaide node (The Plant Accelerator®) after being awarded a Postgraduate Student Internship Grant with us in 2015.

His research attempted to explain the unpredictability of plant growth responses in terms of resource limitation by introducing fungal communities to plants which are isolated from soils containing high or low levels of salinity and analysing the effects on plant stress at the phenotypic level.

This is what he had to say about his experience:

”Using daily phenotyping following the application of salt stress and controlled watering-to-weight in The Plant Accelerator® allowed for an unprecedented resolution and range of plant genetic changes in response to combinations of nutrient level, salinity and two different fungal communities that would not otherwise be achievable in a regular greenhouse,” said Rohan.

rohan_brachy

”As a PhD student with limited experience in greenhouse experiments, the highly controlled growth conditions, large-scale automation, digital imaging and software technology (high-throughput phenotyping) at The Plant Accelerator® provided me with the work-space, expertise and technical support to make a complicated experiment possible.”

“It has been an amazing experience to conduct this experiment at The Plant Accelerator®. I am walking away from the facility with a big smile on my face, an incredible dataset for my PhD research and invaluable experience in greenhouse based plant research.”

To find out more about Rohan’s research:  https://www.researchgate.net/profile/Rohan_Riley

A better way to tackle environmental variation in your greenhouse research

Statistics prove the smart way to deal with variation in your controlled environment greenhouse.

Plant phenomics allows the measurement of plant growth with unprecedented precision. As a result, the question of how to account for the influence of environmental variation across the greenhouse has gained attention.

Controlled environment greenhouses offer plant scientists the ability to better understand the genetic elements of specific plant traits by reducing the environmental variances in the interaction between genetics and environment.

But controlled environments aren’t as controlled as they seem – variation does exist. For example, some days are cloudy, some are not. The sun, as it crosses the sky, casts shadows differently on plants, depending on their position within the greenhouse. In fact, a recent study by colleagues at INRA in Montpellier showed significant light gradients within a greenhouse and provided sophisticated tools for understanding how much light each plant receives.

One practice for dealing with variation has been to rearrange the position of the plants around the greenhouse during the experiment, however, there is a better way.

img_1128

Rice plants growing in The Plant Accelerator® at the Australian Plant Phenomics Facility’s Adelaide node

The automated high-throughput phenotyping greenhouses at The Plant Accelerator® are controlled environment facilities which use sensor networks to identify and quantify environmental gradients (light, temperature, humidity) in the greenhouses. To further tackle environmental variation, Chris Brien, Senior Statistician at The Plant Accelerator®, led a study that showed good statistical design and analysis was key to accounting for the impact of environmental gradients on plant growth. It was argued that rearranging the plants during the experiment makes it impossible to adjust for the effect of gradients and should be avoided.

The study involved a two-phase wheat experiment involving four tactics in a conventional greenhouse and a controlled environment greenhouse at The Plant Accelerator® to investigate these issues by measuring the effect of the variation on plant growth.

To learn more about Chris’s study read the full paper here.

To discuss the benefits of good statistical design contact Chris Brien.

To access The Plant Accelerator® for your research:  The Plant Accelerator® at the Australian Plant Phenomics Facility (APPF) is available to all publicly or commercially funded researchers. We have a full team of specialists including statisticians, horticulturalists and plant scientists who can provide expert advice to you when preparing your research plans.