salinity

Spreading the word on great plant science

The Australian Plant Phenomics Facility (APPF) will appear in the media twice this week, promoting the importance of plant science.

The Stock Journal ran an article today (27 April) featuring our very own Dr Trevor Garnett on the front cover, talking about the importance of investment in agricultural research and the services available to scientists at the APPF.

The Adelaide node of the APPF will also feature on Channel 9’s television show “South Aussie with Cosi” which will air this Friday (28 April) at 8pm as part of a feature on the history and incredibly important research undertaken within the Waite Research Precinct. The segment can be viewed online here (2:30min).Trevor_Stock Journal paper clips

Last chance to secure an internship – apps close tomorrow!

This is your chance to investigate your plant science questions with the support of the highly skilled Australian Plant Phenomics Facility (APPF) team and the incredible technology and infrastructure we have available.

Internships are offered at the APPF in Adelaide and Canberra for enthusiastic, highly motivated postgraduate students with a real interest in our research and technology. Current postgraduate students in the following areas are encouraged to apply:

  • Agriculture
  • Bioinformatics
  • Biology
  • Biotechnology
  • Computer Science
  • Genetics
  • Mathematics
  • Plant physiology
  • Science
  • Software engineering
  • Statistics

Interstate students are strongly encouraged to apply!

We offer postgraduate internship grants which, in general, comprise:

  • $1,500 maximum towards accommodation in Adelaide or Canberra, if required
  • $500 maximum towards travel / airfare, if required
  • $10,000 maximum toward infrastructure use

The APPF has identified a number of priority research areas, each reflecting a global challenge and the role that advances in plant biology can play in providing a solution:

  • Tolerance to abiotic stress
  • Improving resource use efficiency in plants
  • Statistics and biometry
  • Application of mechatronic engineering to plant phenotyping
  • Application of image analysis techniques to understanding plant form and function

Students proposing other topics will also be considered.

APPF postgraduate internship grants involve access to the facility’s phenotyping capabilities to undertake collaborative projects and to work as an intern with the APPF team to learn about experimental design, image and data analysis in plant phenomics.

Selection is based on merit. Applications are assessed on the basis of academic record, research experience and appropriateness of the proposed research topic. Interviews may be conducted.

Postgraduate students are encouraged to contact APPF staff prior to submitting their application to discuss possible projects.

APPLICATIONS CLOSE:  31 March 2017. For further information click here.

 

Why apply for an internship with the APPF?

Well, aside from the fact we are a pretty nice bunch…

PhD student Rohan Riley, from Western Sydney University, undertook his research at APPF’s Adelaide node (The Plant Accelerator®) after being awarded a Postgraduate Student Internship Grant with us in 2015.

His research attempted to explain the unpredictability of plant growth responses in terms of resource limitation by introducing fungal communities to plants which are isolated from soils containing high or low levels of salinity and analysing the effects on plant stress at the phenotypic level.

This is what he had to say about his experience:

”Using daily phenotyping following the application of salt stress and controlled watering-to-weight in The Plant Accelerator® allowed for an unprecedented resolution and range of plant genetic changes in response to combinations of nutrient level, salinity and two different fungal communities that would not otherwise be achievable in a regular greenhouse,” said Rohan.

rohan_brachy

”As a PhD student with limited experience in greenhouse experiments, the highly controlled growth conditions, large-scale automation, digital imaging and software technology (high-throughput phenotyping) at The Plant Accelerator® provided me with the work-space, expertise and technical support to make a complicated experiment possible.”

“It has been an amazing experience to conduct this experiment at The Plant Accelerator®. I am walking away from the facility with a big smile on my face, an incredible dataset for my PhD research and invaluable experience in greenhouse based plant research.”

To find out more about Rohan’s research:  https://www.researchgate.net/profile/Rohan_Riley

Delicious potential: The genome of quinoa decoded

Scientists have successfully decoded the genome of quinoa, one of the world’s most nutritious and resilient crops.

The study, published online this week in Nature, was an international collaboration led by Professor Mark Tester at the King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

The enormously popular “super-food” is gluten-free, has a low glycaemic index and contains an excellent balance of essential amino acids, fibre, lipids, carbohydrates, vitamins, and minerals, causing international demand for the grain to soar and prices to skyrocket as demand exceeds supply.

“Apart from its nutritional benefits, the ability of quinoa to grow on marginal land is possibly most exciting”, said Prof Mark Tester. “It can grow in poor soils, salty soils and at high altitudes. It really is a very tough plant. Quinoa could provide a healthy, nutritious food source for the world using land and water that currently cannot be used, and our new genome takes us one step closer to that goal.”

quinoa-kaust-trials

Quinoa pilot trials in the Australian Plant Phenomics Facility’s high-throughput phenotyping Smarthouse at The Plant Accelerator®

Future research projects will focus on identifying the genes that make quinoa so tolerant to poor soils. In pilot experiments carried out at the Australian Plant Phenomics Facility‘s Adelaide node, The Plant Accelerator®, different growth conditions and salt applications were tested in preparation for larger-scale studies. The first studies showed that quinoa still grows well when watered with half-strength sea water, when many other crops would die. Since performing these initial experiments, Professor Tester and his team have secured further research funding to work towards establishing quinoa as a broadacre crop.

“We are extremely excited to support this important research”, said Dr Bettina Berger, Scientific Director at The Plant Accelerator®. “As part of this collaborative project, The Plant Accelerator® will perform two screening runs of a diversity panel in the second half of 2017 to identify the genetic basis of salt tolerance in quinoa”.

Further reading:

The full published study in Nature. doi:10.1038/nature21370

KAUST An Integrated Repository for Population Genomics in genus Chenopodium

BBC News online article

Nature Middle East online article

 

Adelaide to host 5th International Plant Phenotyping Symposium

The Australian Plant Phenomics Facility is thrilled to announce the city of Adelaide, South Australia will host the 5th International Plant Phenotyping Symposium in October 2018!

Adelaide

2018 Host City, Adelaide, South Australia   (Image source: South Australian Tourism Commission)

The International Plant Phenotyping Network (IPPN) voted during its general assembly, held alongside the 4th International Plant Phenotyping Symposium in Mexico recently.

We look forward to welcoming the international plant phenotyping community to Adelaide in 2018!

 

 

Hello, ni hau, hola, guten tag, marhaba, bonjour… knowledge sharing the key to plant science success

The Australian Plant Phenomics Facility (APPF) is a national facility, available to all plant scientists, offering access to infrastructure that is not available at this scale or breadth in the public sectors anywhere else in the world.

Our three nodes in Adelaide and Canberra frequently welcome international research, industry and government guests to tour facilities and share knowledge in plant phenomics. Encouraging and supporting a global community focused on providing better nutrition and food security is key to the APPF vision we uphold.

Recently the CSIRO based HRPPC node of the APPF hosted a VIP visit by the Secretary of the Department of Industry, Innovation and Science, Glenys Beauchamp, CSIRO CEO, Larry Marshall, and the Canadian High Commissioner, His Excellency Paul Maddison.

jamie_scarrow_canadahighcomm-at-appf-act

Larry Marshall (CEO, CSIRO), Glenys Beauchamp (Secretary, Department of Industry, Innovation and Science) and His Excellency Paul Maddison (Canadian High Commissioner) in front of a Phenomobile Lite at the APPF HRPPC           (Image courtesy of the CSIRO)

Hosted by Drs Xavier Sirault and Jose Jimenez-Berni, the visitors observed aspects of the work done by the APPF’s HRPPC in the controlled environment and had the opportunity to see first-hand one of the centre’s purpose built and designed Phenomobile Lite buggies which are used in the field for capturing plant traits.

The group discussed an overview of the range of research and development activities and issues facing Australia in science and technology and the Canadian High Commissioner shared his interested in areas of existing and potential collaboration between Australia and Canada.

We welcome and encourage engagement with the international plant science community. If you would like to visit one of our sites, discuss your plant phenomics research or book one of our facilities, please contact us – we love plant science!

 

 

What the experts are saying about plant phenotyping and food security

‘It takes a village to raise a child’ states the age-old saying, but now it will take a village to feed the child as well – if we’re smart.

“Agriculture’s critical challenges of providing food security and better nutrition in the face of climate change can only be met through global communities that share knowledge and outputs; looking inward will not lead to results,” said Ulrich Schurr, Director of the Institute of Bio- and Geosciences of the Forschungszentrum Jülich and Chair of the International Plant Phenotyping Network (IPPN), speaking at the 4th International Plant Phenotyping Symposium in Mexico recently.

4th-ippn-conf-photo-2-group

Dr Jose Jimenez-Berni (keynote speaker), Dr Xavier Sirault (Co-Chair IPPN), Dr Trevor Garnett and Dr Bettina Berger from the Australian Plant Phenomics Facility at the symposium

200 world-class scientists from over 20 countries gathered from 13 to 15 December 2016 to share knowledge and technology at the symposium, co-hosted by IPPN and the Mexico-based International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYT.

The symposium was attended by Dr Bettina Berger, Dr Trevor Garnett, Dr Xavier Sirault and Dr Jose Jimenez-Berni from the Australian Plant Phenomics Facility (APPF). Dr Sirault is also Co-Chair of the IPPN and Dr Jimenez-Berni gave a keynote lecture on field phenotyping techniques developed at the High Resolution Plant Phenomics Facility (HRPPC) node of the APPF and how they can be applied to screen for plant development including biomass and canopy architecture in the field.

4th-ippn-conf-photo-1-berni-talking

Dr Jimenez-Berni (APPF) delivering his keynote lecture at the symposium

The symposium focused on three themes:

  • Advances in Plant Phenotyping Technologies to explore the frontiers of what can be sensed remotely and other technological breakthroughs.
  • Phenotyping for Crop Improvement to consider the application of phenotyping technologies for crop improvement (breeding, crop husbandry, and estimating the productivity of agro-ecosystems).
  • Adding Value to Phenotypic Data to review how phenomics and genomics can combine to improve crop simulation models and breeding methodologies (e.g., genomic selection).

Read the full article ‘Harnessing medical technology and global partnerships to drive gains in food crop productivity’ written by Mike Listman on CIMMYT’s website.

Read more excellent plant science articles by Mike Listman here.

 

 

Drip-fed success

The Australian Plant Phenomics Facility (APPF) is pleased to announce the new DroughtSpotter precision irrigation platform has been fully tested and commissioned, and is now ready to support your plant phenomics research.

The DroughtSpotter is a gravimetric platform with precision irrigation allowing accurate and reproducible water application for drought stress or related experiments.

droughtspotter-and-cecilia-and-viviana

Left:  Wheat plants on the DroughtSpotter  –  Right:  Cecilia and Viviana from Monash University harvest sorghum plants during their research

A number of pilot projects were carried out to test the platform with excellent results.

Monash University researchers, led by Associate Professor Ros Gleadow, investigated the impacts of dhurrin (a chemical that is toxic to grazing animals) on drought tolerance in sorghum plants. Plants were grown under a range of drought stresses and then harvested throughout growth for biomass characterisation, metabolomics and transcriptomic responses.

“We found the DroughtSpotter to be an excellent platform to apply accurate, reproducible amounts of water to large numbers of individual plants for growth and compositional analysis under different levels of water limitation,”said Associate Professor Gleadow.

Led by Professor Steve Tyerman, researchers from the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide and TA EEA-CONICET Mendoza, Argentina investigated the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under water stress.

“A better understanding of these mechanisms is highly relevant to irrigation scheduling and to ensure sustainable vineyard management in a context of water scarcity” said Professor Tyerman.

“The DroughtSpotter platform allowed us to achieve precise control over soil moisture and vine water stress, which was the most critical aspect to the success of this project.”

The DroughtSpotter greenhouse is available to all publicly or commercially funded researchers. For further information, please visit the APPF website or contact Dr Trevor Garnett.

To read the DroughtSpotter pilot project reports:  “Drought Response in Low-Cyanogenic Sorghum bicolor Mutants”  and  “Investigating the relationship between hydraulic and stomatal conductance and its regulation by root and leaf aquaporins under progressive water stress and recovery, and exogenous application of ABA in grapevine”